Laura Fabris

Associate Professor

Materials Science and Engineering

Phone:848-445-5606
Fax:(732) 445-3258
Email:lfabris@rutgers.edu
Office:CCR-216
Office Hours: By appointment
Website: www.fabrislab.com

Research

Dr. Fabris’ research interests focus on the synthesis, functionalization, characterization, and application of plasmonic nanoparticles, with emphasis on gold, silver, and, more recently, aluminum. The Fabris group has also expertise in surface enhanced Raman scattering (SERS) with main focus on sensing and imaging tags.

Currently there are two main relevant research areas: 1) Development of SERS tags for biomedical applications in cell and tissue imaging, 2) Synthesis and characterization of gold nanostars for highly sensitive detection (up to the 100-molecules level) of small molecule analytes (e.g. pollutants) and biomolecules (e.g. oligonucleotides, proteins, disease biomarkers, and metabolites), 3) Development of novel bottom-up protocols for the synthesis of plasmonic nanoparticles, and 4) Development of 3D finite element simulations to understand the plasmonic properties of complex metallic nanostructures.

Teaching

Professor Fabris' teaching responsibilities during the 2017-2018 academic year are:

  • Fall 2017:           Introduction to Materials Science Engineering, 14:635:203
  • Spring 2018:      TBD

Documents

Education

Ph.D., Chemical Sciences, University of Padova, Italy, 2006
B.S./M.S., Summa Cum Laude, Physical Chemistry, University of Padova, Italy, 2001

Professional Affiliations

  • American Chemical Society 
  • Materials Research Society
  • Sigma Xi

Research Interests

Dr. Fabris’ research interests focus on the synthesis, functionalization, characterization, and application of plasmonic nanoparticles, with emphasis on gold, silver, and, more recently, aluminum. The Fabris group has also expertise in surface enhanced Raman scattering (SERS) with main focus on sensing and imaging tags.

Currently there are two main relevant research areas: 1) Development of SERS tags for biomedical applications in cell and tissue imaging, 2) Synthesis and characterization of gold nanostars for highly sensitive detection (up to the 100-molecules level) of small molecule analytes (e.g. pollutants) and biomolecules (e.g. oligonucleotides, proteins, disease biomarkers, and metabolites), 3) Development of novel bottom-up protocols for the synthesis of plasmonic nanoparticles, and 4) Development of 3D finite element simulations to understand the plasmonic properties of complex metallic nanostructures.

Selected Publications

Journal Publications (h-index 23 on Google Scholar)

  1. Tsoulos, T. V.; Atta, S.; Lagos, M. J.; Batson, P. E.; Tsilomelekis, G.; Fabris, L.* Rational Design of Gold Nanostars with Tailorable Plasmonic Properties. Nanoscale 2019, DOI: 10.1039/ C9NR06533D Accepted.
  2. Langer, J.; Jemenez De Aberasturi, D.; Aizpurua, J.; …Fabris, L.; …Liz-Marzan, L. et al. Present and Future of Surface Enhanced Raman Scattering. ACS Nano 2019, DOI: 10.1021/acsnano.9b04224 Accepted (Editor’s Choice).
  3. Atta, S.; Rangan, S., Fabris, L.* Highly Tunable Growth and Etching of Silica Shells on Surfactant Free Gold Nanostars. ChemNanoMat 2019, DOI: 10.1002/cnma.201900459 Accepted.
  4. Wang, H; Dardir, K.; Lee, K.-B.; Fabris, L.* The Impact of Protein Corona in Nanoflare-based Biomolecular Detection and Quantification. Bioconj. Chem. 2019, DOI: 10.1021/acs.biconjchem.9b00495, In Press.
  5. Aizpurua, J.; Baletto, F.; Baumberg, J.; Christopher, P.; de Nijs, B.; Deshpande, P.; Diaz Fernandez, Y.; Fabris, L.; et al. Theory of Hot Electrons: General Discussion. Faraday Discuss. 2019, 214, 245.
  6. Aizpurua, J.; Baumberg, J.; Caps, V.; Cortes, E.; de Nijs, B.; Diaz Fernandez, Y.; Fabris, L.; et al. Applications in Catalysis, Photochemistry, and Photodetection: General Discussion. Faraday Discuss. 2019, 214, 475.
  7. Aizpurua, J.; Baumberg, J.; Boltasseva, A.; Christopher, P.; Cortes, E.; Cronin, S. B.; Dadhich, B. K.; de Nijs, B.; Deshpande, P.; Diaz Fernandez, Y.; Fabris, L.; et al. Faraday Discuss. 2019, 214, 365.
  8. Kallontzi, S.; Fabris, L.; Jitianu, M.; Hernandez, A.; Jitianu, A.; Klein, L. Gold Nanoparticles in Melting Gels. J. Sol-Gel. Sci. Technol. 2019, 89, 66.
  9. Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface Enhanced Raman Scattering. Biosensors 2019, 9, 57.
  10. Atta, S.; Celik, F. E.; Fabris, L.* Enhancing Hot Electron Generation and Injection in the NIR via Rational Design and Controlled Synthesis of TiO2-gold Nanostructures. Faraday Discuss. 2019, 214, 341.
  11. Fourniera, S. B.; Kallontzi, S.; Fabris, L.; Love, C.; Stapleton, P. A. Effect of Gestational Age on Maternofetal Vascular Function Following Single Maternal Engineered Nanoparticle Exposure. Cardiovasc. Toxicol. 2019 In Press.
  12. Atta, S.; Beetz, M.; Fabris, L.* Understanding the Role of AgNO3 Concentration and Seed Morphology to Achieve Tunable Shape Control in Gold Nanostars. Nanoscale 2019, 11, 2946.
  13. Klein, L. C.; Kallontzi, S.; Fabris, L.; Jitianu, A.; Ryan, C.; Aparicio, M.; Lei, L.; Singer, J. P. Applications of Melting Gels. J. Sol-Gel. Sci. Technol. 2019, 89, 66.
  14. Sardar, S.; Fabris, L.*; Javanmard, M. Improved Precision in Surface Enhanced Raman Scattering Quantification of Analyte through Dual-modality Multi-site Sensing. Anal. Chem. 2019, 91, 4323 (Featured on the Cover).
    1. Tsoulos, T. V.; Fabris, L.* Interface and Bulk Standing Waves Drive the Coupling of Plasmonic Nanostar Antennas. J. Phys. Chem. C 2018, 122, 28949.
    2. Bhamidipati, M.; Lee, G.; Kim, I.; Fabris, L.* SERS-based Quantification of PSMA in Tissue Microarrays Allows Effective Stratification of Prostate Cancer Patients. ACS Omega 2018, 3, 16784.
    3. Bhamidipati, M.; Cho, H. Y.; Lee, K.-B.; Fabris, L.* SERS-based Quantification of Biomarker Expression at the Single Cell Level Enabled by Gold Nanostars and Truncated Aptamers. Bioconj. Chem. 2018, 29, 2970.
    4. Atta, S.; Pennington A. M.; Celik, F.; Fabris, L.* TiO2 on Gold Nanostars Enhances Photocatalytic Water Reduction in the Near Infrared Regime. Chem 2018, 4, 2140 (Altmetric Score 135).

2017

  1. Tsoulos, T. V.; Han, L.; Weir, J.; Xin, H. L.; Fabris, L.* A Closer Look at the Physical and Optical Properties of Gold Nanostars: An Experimental and Computational Study. Nanoscale 2017, 9, 3766 (chosen as DOE Office of Science Highlight).
  2. Bhamidipati, M.; Fabris, L.* Multiparametric Assessment of Gold Nanoparticle Cytotoxicity in Cancerous and Healthy Cells: The Role of Size, Shape, and Surface Chemistry. Bioconj. Chem. 2017, 28, 449.

2016

  1. Atta, S.; Tsoulos, T. V.; Fabris, L.* Shaping Gold Nanostar Electric Fields for Surface- Enhanced Raman Spectroscopy Enhancement via Silica Coating and Selective Etching. J. Phys. Chem. C 2016, 120, 20749.
  2. Fabris, L.* SERS Tags: The Next Promising Tool for Personalized Cancer Detection?

ChemNanoMat. 2016, 2, 249.

23.Smith, P. F.; Deibert, B. J.; Kaushik, S.; Gardner, G.; Hwang, S.; Wang, H.; Al-Sharab,

J. F.; Garfunkel, E.; Fabris, L.; Li, J.; Dismukes, G. C. Correlating Water Oxidation Activity to Corner Sharing Mn3+O6 Octahedra via the Manganite (γ-MnOOH) Polymorph. ACS Catalysis 2016, 6, 2089.

  1. Butcher Jr., D. P.; Wadams, R. C.; Drummy, L.; Koerner, H.; Bailey, C.; Scheltens, F.; McComb, D.; Fabris, L.; Durstock, M. F.; Tabor, C. Controlled Dispersion of Polystyrene-Capped Au Nanospheres in P3HT:PC61BM and Consequences upon Active Layer Nanostructure. J. Pol. Sci. 2016, 54, 709.

2015

  1. Fabris, L.* Gold-based SERS Tags for Biomedical Imaging. J. Opt. 2015, 17, 114002 (Invited, 2015 Editor’s Choice Award).
  2. Perets, E. A.; Indrasekara, A. S. D. S.; Kurmis, A.; Atlasevich, N.; Fabris, L.; Arslanoglu, J. Carboxy-Terminated Immuno-SERS Tags Overcome Non-Specific Aggregation for the Robust Detection and Localization of Organic Media in Artworks. Analyst 2015, 140, 5971.
  3. Indrasekara, A. S. D. S.; Fabris, L.* SERS-based Approaches toward Genetic Profiling.

Bioanalysis 2015, 7, 263 (Invited).

  1. Indrasekara, A. S. D. S.; Thomas, R.; Fabris, L.* Plasmonic Properties of Regiospecific Core–satellite Assemblies of Gold Nanostars and Nanospheres. Phys. Chem. Chem. Phys. 2015, 17, 21133. (Invited).

2014

29.Thomas, R.; Fabris, L.*; O’Carroll, D. M. Gold Nanowire and Nanorod Plasmonic Mechanisms for Increasing Ultra-Thin Organic Photovoltaic Active Layer Absorption. Plasmonics 2014, 9, 1283.

  1. Indrasekara, A. S. D.S.; Meyers, S.; Shubeita, S.; Feldman, L. C.; Gustafsson, T.; Fabris, L.* Gold Nanostar Substrates for SERS Sensing in the Femtomolar Regime. Nanoscale 2014, 6, 8891.

31.Wadams, R. C.; Yen, C.; Butcher Jr., D. P.; Koerner, H.; Durstock, M. F.; Fabris, L.; Tabor, C. E. Gold Nanorod Enhanced Organic Photovoltaics: The Importance of Morphology Effects. Org. Electron. 2014, 15, 1448.

  1. Indrasekara, A. S. D. S.; Wadams, R. C.; Fabris, L.* Ligand Exchange on Gold Nanorods: Going Back to the Future. Part. Part. Syst. Char. 2014, 31, 819.

2013

33.Wadams, R. C.; Fabris, L.; Vaia, R. A.; Park, K. Time-dependent Susceptibility of the Growth of Gold Nanorods to the Addition of a Cosurfactant. Chem. Mater. 2013, 25, 4772.

34.Indrasekara, A. S. D. S.; Paladini, B. J.; Naczynski, D. J.; Starovoytov, V.; Moghe, P. V.; Fabris, L.* Dimeric Gold Nanoparticle Assemblies as Tags for SERS- Based Cancer Detection. Adv. Healthcare Mater. 2013, 2, 1370.

  1. Park, K.; Drummy, L. F.; Wadams, R.; Koerner, H.; Nepal, D.; Fabris, L.; Vaia, R. A. Growth Mechanism of Gold Nanorods. Chem. Mater. 2013, 25, 555.
  2. Jiang, Y.; Huan, Q.; Fabris, L.; Bazan, G. C.; Ho, W. Submolecular Control, Spectroscopy, and Imaging of Bond-selective Chemistry in Single Functionalized Molecules. Nature Chem. 2013, 5, 36.
    1. Rodriguez-Lorenzo, L.; Fabris, L.*; Alvarez-Puebla, R. Multiplex optical Sensing with Surface Enhanced Raman Scattering: A Critical Review. Anal. Chim. Acta 2012, 745, 10 (Invited).
    2. Fabris, L.* Bottom-up Optimization of SERS Hot-spots. Chem. Commun. 2012, 48, 9321 (Featured on the Cover).
    3. Mark, P. R.; Fabris, L.* Understanding Nanoparticle Assembly: A Simulation Approach to SERS Active Dimers. J. Colloid Interf. Sci. 2012, 369, 134.

2011

40.Silva, R.; Biradar, A.; Fabris, L.*; Asefa, T. Au/SBA-15 Based Robust and Convenient- to-Use Nanopowder Material for Surface Enhanced Raman Scattering (SERS) with High SERS Enhancement Factor. J. Phys. Chem. C 2011, 115, 22810.

  1. Whitmore, D.; El-Khoury, P.; Fabris, L.; Chu, P.; Bazan, G.; Potma, E.; Apkarian,

V. A. High Sensitivity Surface-Enhanced Raman Scattering in Solution using Engineered Silver Nanosphere Dimers. J. Phys. Chem. C 2011, 115, 15900.

 

2010

  1. Guarrotxena, N.; Liu, B.; Fabris, L.*; Bazan, G.C. Antitags: Nanostructured Tools for Developing SERS-Based ELISA Analogs. Adv. Mater. 2010, 22, 4954.

43.Fabris, L.; Schierhorn, M.; Moskovits, M.; Bazan, G.C. Aptatag-Based Multiplexed Assay for Protein Detection by Surface Enhanced Raman Spectroscopy. Small, 2010, 6, 1550.

2009

  1. Braun, G.; Lee, S.J.; Laurence, T.; Fera, N.; Fabris, L.; Bazan, G.C.; Moskovits, M.; Reich, N.O. Generalized Approach to SERS-Active Nanomaterials via Controlled Nanoparticle Linking, Polymer Encapsulation and Small Molecule Infusion. J. Phys. Chem. C 2009, 113, 13622.

2008

  1. Fabris, L.; Dante, M.; Nguyen, T.Q.; Tok, J. B.-H.; Bazan, G.C. SERS Aptatags: New Responsive Metallic Nanostructures for Heterogeneous Protein Detection by Surface Enhanced Raman Spectroscopy. Adv. Funct. Mater. 2008, 18, 2518 (Featured on the Cover).

2007

  1. Fabris, L.; Dante, M.; Braun, G.; Lee, S.J.; Reich, N.O.; Moskovits, M.; Nguyen, T.Q.; Bazan, G.C. A Heterogeneous PNA-Based SERS Method for DNA Detection. J. Am. Chem. Soc. 2007, 129, 6086.

2006

  1. Holm, A.; Ceccato, M.; Donkers R. L.; Fabris, L.; Pace, G.; Maran, F. Effect of Peptide Ligand Dipole Moments on the Redox Potentials of Au38 and Au140 Nanoparticles. Langmuir 2006, 22, 10584.
  2. Fabris, L.; Antonello, S.; Armelao, L.; Donkers, R.L.; Polo, F.; Toniolo, C.; Maran, F. Gold Nanoclusters Protected by Conformationally Constrained Peptides. J. Am. Chem. Soc. 2006, 128, 326.

 

Published Conference Proceedings

  1. Butcher, D. P.; Yen, C.; Durstock, M.; Tabor, C. E.; Wadams, R. C.; Fabris, L. Improved Light Harvesting in Organic Solar Cells with Plasmonic Nanoparticles in the Active Layer. Abstr. Pap. Amer. Chem. S. 2013, 245.
  2. Fabris, L.; Paladini, B. J; Wadams, R. C; Gold Nanoparticle Dimers as Tags for SERS- based Cancer Detection. Abstr. Pap. Amer. Chem. S. 2011, 242.
  3. Wadams, R. C; Fabris, L.; Seed-mediated Synthesis and Characterization of Gold Nanoparticles of Various Morphologies. Abstr. Pap. Amer. Chem. S. 2011, 242.

4.Guarrotxena, N.; Fabris, L.; Liu, B.; Bazan, G. C.; Ag-Nanoparticle-based Bioassays for Protein Detection by Surface Enhanced Raman Spectroscopy. Abstr. Pap. Amer. Chem. S. 2010, 239.

  1. Maran, F.; Antonello, S.; Fabris, L.; Polo, F.; Electron Transfer Through Conformationally Constrained Oligopeptides. 207th ECS Meeting, MA2005-01, 1410, 2005.
  2. Donkers, R. L.; Antonello, A.; Fabris, L.; Maran, F. Effect of the Peptide Ligands on the Quantized Charging Behavior of Monolayer Protected Au38 Clusters. In: Charge Transfer Processes in Semiconductor and Metal Nanostructures, T. Lian, K. Murakoshi, and G. Rumbles,

Editors. The Electrochemical Society: Pennington, NJ, PV 2004-22, 2005.

  1. Fabris, L.; Antonello, S.; Zuliani, C.; Maran, F.; Distance and Orientation Dependence of Dissociative Electron Transfers. 204th ECS Meeting, Abs. 1392, 2003.

 

Book Chapters

 

  1. Fabris, L. Noble Metal Nanoparticles as SERS Tags. In: The World Scientific Encyclopedia of Nanomedicine and Bioengineering. Yu Cheng, Donglu Shi Eds. World Scientific Publishing, Singapore, 2016.
  2. Pilot, R.; Signorini, R.; Fabris, L. Surface Enhanced Raman Spectroscopy: Principles, Substrates, and Applications. In: Metal Nanoparticles and Clusters. Francis Leonard Deepak Ed. Springer, 2017.

 

Patents

1.US Patent No. US 10,024,800 B2 titled “Gold Nanostar Substrates for SERS Sensing in the Femtomolar Regime” published July 17, 2018.